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Test of mode coupling theory for a supercooled liquid of diatomic molecules.
Il. g-dependent orientational correlators
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Using molecular-dynamics computer simulations, we study the dynamics of a molecular liquid by means of
a general class of time-dependent correlaﬁ?s(q,t), which explicitly involve translationa(TDOF) and
orientational degrees of freedof@DOPF). The system is composed of rigid, linear molecules with Lennard-
Jones interactions. Thg dependence of the static correlat®5 (q) strongly depends oh I’, andm. The
time-dependent correlators are calculated fet’. A test of some of the predictions of mode coupling theory
(MCT) is performed forST(q,t) for I=1,2 and its self-par§®™(q,t), for I=1,...,6. We find aclear
signature for the existence of a single temperafiye at which the nature of the dynamics changes signifi-
cantly. In the first scaling law regime of MCT it is found that the various correlators can be fitted wiph the
correlatorG(t), with the exception of those with= 1. Since this is true for the same exponent parameses
obtained for the TDOF, we thus find that MCT gives a consistent description of the dynamics of the TDOF as
well as the one of the ODOF, with the exceptionlefl. This different behavior fok#1 andl=1 can also
be seen from the corresponding susceptibilitig8) (g, ), which exhibit a minimum at about the same
frequencyw, for all g and alll #1, in contrast to ”)7}(q,w) for which w/;;~10wm,. The asymptotic
regime, for which the first scaling law holds, shrinks with increadinghe second scaling law of MCT
(time-temperature superposition principle reasonably fulfilled fol #1 but not forl=1. Furthermore, we
show that theq and (,m) dependence of the self-part approximately factorizes, i?qﬁs.),m(q,t)
=C(t)F«(q,t) for all m. [S1063-651X98)02808-4

PACS numbgs): 61.43.Fs, 61.20.Ja, 02.70.Ns, 64.70.Pf

I. INTRODUCTION of the orientational correlation functions

In the past few years quite a few papers were published in
which computer simulations were used to study the time de-
pendence of theanslationaldegrees of freedorfiTDOF) in

supercooled liquids. On the other hand, trentationalde- 44 the seIf—parC,‘S)(t). Here, U, (t) is the unit vector point-
grees of freedontODOF were so far investigated in much ing along the molecular symmetry axis of moleculeand
!ess d_etail since t_he simulation and data analysis of _systerqsl(x) is thel th Legendre polynomial. The relevance of these
in which the particles are molecules are quite a bit morgypes of correlation functions is given by the fact that they
involved than the ones in which the particles have no struccan be measured in experiments. The main results of that
ture. However, since most real materials are of moleculapaper were that the temperature dependence of the relaxation
nature apd since experimental methods such as light scattéfmes ofC, C{® and the diffusion constam were given by
ing or dielectric measurements probe also the ODOF, it i power law with the same critical temperatdigbut with
important to understand how the dynamics of the TDOF andritical exponents that depend on the observable. In addition,
the ODOF are related to each other. Only by understandingie showed that the so-called time temperature superposition
this relationship will it be possible to make a correct inter-principle works well forcl(s), if 1>2. Thus we concluded
pretation of the experimental measurements and to gain irthat many of the predictions of mode coupling the@cCT)
sight into the nature of the glass transition, i.e., the dramati¢2,3] hold for these correlation functions, although certain
slowing down of the relaxation dynamics of supercooled lig-discrepancies are present.
uids upon approaching the glass transition temperature. A In the preceding paper, subsequently called KKS-I, we
more thorough discussion of these connections can be fountiave investigated the time and temperature dependence of
e.g., in Ref.[1], where we also review some of the other the translational degrees of freedom by studying quantities
work in this field. such as the van Hove correlation functi@y(r,t) and the
Very recently we have carried out a molecular-dynamicsntermediate scattering functiof(q,t) [4]. The main con-
computer simulation of a simple molecular system in orderclusion of that paper was that MCT is able to give also a
to make a detailed comparison between the dynamics of thgood description for the time and temperature dependence of
TDOF and the ODOHF1]. Each molecule in this system is these correlation functions.
dumb-bell shaped and consists of two Lennard-Jones par- As we will demonstrate below, the intermediate scattering
ticles that are separated by a fixed distadcdviore details  function F(q,t) and the orientational correlation functions
on the system and the simulation can be found in Ridf.In  C,(t) are just a special case of a more general type of cor-
that paper we studied the time and temperature dependenoaation function, which involves the translational as well as

1 > >
Ci() =1 2 (Piln(0)-Un (1)), 11, (D)
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the orientational degrees of freedom at finite wave ve&tor Soo oc((_it)

i.e., |q|>0. The goal of thepresentpaper is therefore to Soood ) =F(a,0), ©
investigate the time and temperature dependence of these 0.0

more general correlation functions, since it is these correlage | the normalized density correlator for the center of mass

tors that are needed for a more detailed description of thggsitions, which was studied in KKS-I. On the other hand,
dynamics of a molecular system. In addition, these correIaW

tion functions can also be calculated directly within the e find from Eq.(5) for q=0,

framework of MCT (although such a calculation might in Sim t7m (01)=Cy(t) Sy 8111+ 7)

practice be quite involvedhus allowing to perform a more ’

stringent test of whether MCT is able to give a correct deHere the addition theorem for the spherical harmonis

scription of the dynamics of the system investigated. and the isotropy have been used. As already mentioned in the
Our paper is organized as follows: In the next section wantroduction, this special case was investigated in REf.

will introduce the mentioned generalized correlation func-gquations(6) and(7) hold for the corresponding self-part as
tions and will discuss some of their properties. Section Illyyg]|.

presents the results and the MCT analySiS and the final sec- A|th0ugh it is not obvious how these correlators fdr’

tion contains a summary and our main conclusions. £0 can be measured in real experimentsder0, they are
the basic quantities that enter the MCT for a molecule in a
Il. CORRELATION FUNCTIONS simple liquid[6] and for molecular liquid$7-11. To our

We introduce a set of correlators that involves the oneknowledge, there exists only one computer simulation that

particle density and the angular dependence for a molecul&Onsidersy-dependent orientational correlatgf]. But the
liquid of rigid, axially symmetric molecules: experimental relevance of the correlators considered in Ref.

[12] is unclear. The correlators given in Ed) simplify a

N L R

- . - bit, if one uses theg frame[5], i.e.,q=0qy=(0,09). In that
P(X,Q't):gl O(X—Xn(1))6(2, (1)), (2 case one obtaing]

wherex,(t) and Q,(t)=(6,(t), $n(t)) denote the center of Sim.t7m (Ao, ) =S(A,1) S ®)

mass position and the orientation of thién molecule at time . : . , .
t, respectively. Due to the non-Euclidean metric for theWrL1ICh dlffer_:‘nrom zero only for @_E|m|<m|n(l,l ). Since
anglesd and ¢, one must use the invariant delta function Si-(d:t)=S,,7(q,t), one can restrict oneself =0. The
8(Q,Q"). For this and other details of the theoretical de-introduction ofi' in Eqg. (3) makesS||,(q,t) a real quantity.
scription of molecular liquids, the reader is referred to theThe same properties hold for the self-part as well. In the
textbook by Gray and Gubbif&]. Expansion ofo(x,(,t) following we will present all results in thg frame.

with respect to a product of plane waves and spherical har- Some of the equations that we will subsequently make use

monichlm(Q) leads to the tensorial density modes of have been given in KKS-I and are not reprOduced here.
. We will refer to Eq. @) of that paper by (IR).
pin(@.0 =T *477,121 Y im(@n(), @ lll. RESULTS

. This section is subdivided into two parts. The first part
herel=0,1,2 ... —ls=ms=l. The f N . :
wherel=0,1,2 and m e factory4 is used contains the results for the static correlatsﬂé(q), and the

SO thatpoo((i,t) equals the definition ob(d,t) for simple .
liquids andi' is introduced for conveniendsee below. The S?S():n?nd one presents the dynamical correlaﬁ}%q,t) and

corresponding correlators 7 (a,t). In the following we restrict the values bfand!’
to 0, 1, and 2.

- 1 - -
— * -
S (@)= (SpIn(@ DO (G.0) (&) A static propertes

The static correlators are shown in Figs. 1-3 fbr
=0.477, the lowest investigated temperature. First of all, it

becomes obvious from these figures tiﬁ[f,(q=0) is

of the fluctuation dp;m(d,t)=pim(d,t) = (pim(d,t)) vanish
for (q,I,m)=(0,0,0), and are otherwise given by

. am .. . m-independent and diagonal inandl’, as it should be due
Sim,1rm (A0 = 7 2 (exp{—iq-[Xn(t) =X,/ (0) ]} to isotropy. A comparison of the various diagonal correlators
nn in Figs. 1 and 2 with each other shows that the correlators

XY Q)Y (Q4:(0))), (5  S(q) for I=1 and 2 possess a significagtdependence

similar to that of S(q)=F(q,0), in contrast to those fam
which shows the explicit dependence on both the TDOF ang:0. The same behavior was found for a system of dipolar
the ODOF. Its corresponding Se”'paﬁ)wm/(a't) is obvi-  hard sphere$8], although for that system the most promi-
ous. ' nent peak occurs fc&ﬁ(q) atg=0. In contrast td&5(q) and

Taking into account tha¥,,=1/\4, one obtains from S21(q), the correlatoiS),(q) has a rather broad maximum at
Eq. (5) q=0 with a height that is comparable to thatcg,~7.3,
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FIG. 1. Wave-vector dependence of static correlation functions F|g. 3. 0.394(q) (solid line), S,(q) (dashed ling S%,(q)

for T=0.477.5(q)=S3(q) (solid line), STy(q) for m=0 (dotted
line), andm=1 (dashed ling

the location of the main peak Eﬁgz(q). In Fig. 3 we present
the nondiagonal correlatorST,(q) with 1#1". First of all
one recognizes tha8y,(q) is much larger thargy,(q) and

15(q). This can easily be understood. If the molecules ha

“head-tail” symmetry, then it can be shown th&,(q)

=0, forl,l” such that +1’ is odd. Since for our molecules

this symmetry is only slightly broken, we expesf, (q) to
be much smaller for+1’ odd than forl +1’ even.

(dashed dotted line and S}Z(q) (dotted ling versusq for T
=0.477.

with C(9(t) the self-part of Eq(1) andF4(q,t)=S%°(q,t)
the self-part of Eq(6). The reader should note that E§) is
assumed to hold for ath, and that the factorization is trivial
Jor g=0. To check the validity of Eq9) for >0, we show
S¥™(q,t) and CO(t)F4(q,t) in Fig. 4 (=1) and Fig. 5
(1=2) for three differentg values andl' =0.477. Although
the factorization becomes worse with increasingt is still a
reasonable approximation, even fgre10.6. Furthermore,
the quality of the factorization is better in thgrelaxation

The second point one recognizes from this figure is thathan in thea-relaxation regimeat least fol = 2), and it also

the nondiagonal correlatolﬂ}‘,(q) can have the same mag-

becomes better with increasing temperature.

nitude as the diagonal ones. Hence, there is no reason why This approximate factorization does not necessarily mean
the former should be neglected in analytical calculations. Fothat the coupling between the TDOF and ODOF is very
example, since the solutions of the MCT equations for thaveak. The comparison &{¥(t) with F(q,t) in Fig. 4 and

time-dependent correlatoST,(q,t) are determined by the
static correlator:S,T,(q) [8], it might not be a good approxi-
mation to considet=1", only.

B. Dynamical properties

We have investigated both the self-correlators Iferd’
=0,1,...,6 and thecollective correlators fot=1"=0, 1,
and 2. Let us start with the self-pa8f>™(q,t). Often it is
assumedsee, e.g., Ref{13]) that theq and (,m) depen-
dence(wherel =1") factorizes, i.e.,

SP™(a.H)=C{*(F(a,t) )

2.0

1.5

z 10}
£ o

2:

05 |
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FIG. 2. SJ(q) versusq for T=0.477 andm=0 (solid line),
m=1 (dashed ling andm=2 (dotted ling.

Fig. 5 reveals the reason wHs{®™(q,t) can be approxi-
mately factorized. For instanc&(®(t) has decayed to 0.1
for t=2x10% whereas at this time the value &f(q
=2.8}) is still around 0.85, i.e., the ODOF relax much faster
than the TDOF. This is consistent with our observation that
in the time span of the orientational correlation time, as de-
duced fromC(f‘)(t) at the lowest temperature, the average
center of mass positions change only a fractianout 30%

of the mean distance between the molecular centers. We
stress that this is different from the MD simulation of super-
cooled water. Therel¢4(q,t) and C,(t) relax on approxi-
mately the same time scal&4].

We now turn to the test of the various MCT predictions
(see KKS-). We find [15] that S$¥™(q,t) do not obey the
second scaling law, i.e., the time-temperature superposition
principle. This observation has already been made for the
caseq=0 [1], which shows that this type of correlation func-
tion does not follow the predictions of MCT. This situation is
different for the correlation functio8{®™(q,t) with =2, for
which the second scaling law holds reasonably well. The
critical exponentgwhich are practically independent qj
for the divergence of the relaxation time{® and y$®, are
1.8 and 2.45, respectively, where the latter value is fairly
close to the one found for the TDOF(q,t), which was
2.56[4]. The exceptional role for the correlators with 1 is
due to the existence of 180° jumps of the molecular fkjs
since the Legendre polynomidl;(cos) is sensitive on re-
orientations by 180°. The same is true forR{cost) with |
odd. But the weight ofP|(cosf) for 6~0° and 6~180°
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decreases with increasirlg Since the second scaling law C(ls)(t) can be fitted reasonably well witg(t). Since we
holds forl #1, we can restrict ourselves in the following to have shown in Refl1] that for this correlation function the
the analysis of the correlation functions at teevesttem-  first scaling law does not hold, one might argue that it does
perature. not make sense to analyﬁ:és) in the way proposed by MCT.

In Fig. 6 we investigate the validity of the first scaling law However, we find that the violation of the second scaling law
[Eq. (I-4)]. This is done fog=0 by fitting Cl(s)(t) with the  is only weak and therefore it is not unreasonable to make
critical correlatorG(t). We remind the reader that this fit is such an analysisThe so-obtained values far increase to-
performed forfixed values\ =0.76 andt,=69 as obtained wards unity with increasing and reach, e.g., 0.97 fb=6.
from the similar fit ofF (q,ax.t). More details on this analy- We also mention that we do not observe a critical law, Eq.
sis can be found in Sec. IV C of the preceding pd@érFor  (I-6), in its pure form the reason for which is likely the
=2 (Fig. 6) the critical correlator fits the data very well strong influence of the microscopic dynamics on the early
over about two decades in time. This range, however, beB-relaxation regime. However, the gentle approach of the
comes smaller with increasing which may indicate that curves to their inflection point&ee Fig. §is a clear indica-
corrections to the asymptotic law become more important fotion that a contribution of this form is important.
largel. If one uses\ andt, [cf. (I-4)] as free fit parameters, =~ We have found that these results do not change signifi-
the resulting fits follow the data longer by an additional onecantly for S(|S)m(q,t) if g>0. From the fit with the von
to two orders of magnitude in timgWe note that even Schweidler law plus corrections, E@-9) (not shown in Fig.
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FIG. 6. Time dependence oE(°(t) for =23, ...,6 (bold
dashed lings Thin lines: B8 correlator withA=0.76. The circles
indicate the position of the inflection point.

6), one can deduce the critical nonergodicity parameter
£(>9™(q), the critical amplitudd(®™(q), and the correction

h{®™(q), which are shown in Fig. 7 far=1, 2, and 6, for
the casem=0 [see KKS-I for the difference betweéh(q),
h®(q)) and (h(g),h®(q))]. We note that the result fdr
=1 was obtained fok =0.76 and a shift of the time scale to
t.=10. Due to the approximate factorization property, ¢he
dependence off(9™(q) is given by that of f(9)(q)
=£{599(q). The functionsf{>“™(q) decrease with increas-
ing |, as expected from Fig. 6. The variation of the critical
amplitudeh(®™(q) and the correctioh{®?™(q) with q is
similar to that forl=1"=0 (cf. Fig. 13 of KKS-) with the
exception that these quantities do not vanishdes0.

The «, B, and the microscopic time scale can be better
visualized from the imaginary pary{®")T(q,») of the dy-
namical susceptibility as a function a&f, which is shown for
m=0 in Fig. 8 forq=Qqunax |=0 andq=0, 1=1,2. The
microscopic peak is at about=1 for all these values df.

Whereas the position of the peak and the location of the C0.0 5.0 100 150 200  25.0
minimum (for low temperaturgsare approximately the same q

for =0 andl=2, these positions are shifted to higher fre- . 90
quencies by about one decade Fferl. We believe that this FIG. 7. Wave-vector dependence tf° (a), h{®° (b), and

shift relates to the 180° jumps of the moleculese Ref. h{F?° (c) for I=2 andl=6.

[1]), because these jumps do not affect the correlators with " , _ ,
evenl, but those with odd value df and particularly those dePendence db;(q,t). These observations make it obvious
with 1=1. that a factorizatioricf. Eg. (9)] does not work for the collec-

The rest of this section is devoted to the discussion of théiv?rﬁgrtree;?tgfr?he second scaling law is shown in Fia. 11 for

collective correlators|'(q,t), which are presented in Fig. 9 —28 m=0 andl=12 As alrgad found foC(S)(t)gr;md
for g=2.8[the position of the main peak &,(q) (cf. Fig. 9= ' -ady N | .

1)] and in Fig. 10 forq=6.5[the location of the main peak Ci(t), i.e., the correlation functions fog=0, this scaling

f S(g)=<0 o (cf r'(:q_— '1)] Note. that. due t b N law holds for I=2 but not for I=1. We define the
of 5(d)=Sge(d) (cf. Fig. 1. Note, that, due to symmetry _a-relaxation timery, (T) as the time it takeSy'(q, 7m,q) to

(cf. Sec. ), there are only two and three independent corr decav to the value of & The temperature dependence of
elators forl =1 andl =2, respectively. These correlators ex- y P P

_ . ) T) is shown in Fig. 12. FixingT.=0.475, the
hibit a strongm dependence, in contrast ESS)m(q’t)' The alinrgl(a;ation times obey agpower IanO%] oi/er about two
reader should also note th&},(q,t)<S?,(q,t) for q=2.8,

1 0 X © to three decades in time. For the corresponding expompent
whereasSy;(q,1)>S;,(q,t) for q=6.5. These inequalities - one optains approximately 1.9 fbr 1 and 2.5 foi =2 with
are related to the fact tha;)(q) has its main peak af  no significantq dependence. Again the values forl =2
=2.8, whereSjy(q) does not have a maximum, whereas (and the same remains true for 3, . . . ,6) fitwith that for
Sil(q) has its main peak aj=6.5, wheres(l)l(q) is close to  |=0, which was around 2.5Gee KKS-), whereas the value
a minimum. Similar considerations hold for the and q of y for I =1 is quite different.
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FIG. 10. Time dependence of the collective correlaféq,t)
for q=6.5,T=0.477, and =1 (solid lineg, | =2 (dashed lines

The test of the first scaling law by fitting the time depen-
dence ofS[['(q,t) with the 8 correlator is done in Fig. 13 for
=2, m=0. This fit (again with\=0.76 andt,=69) works
well for different values ofq. From the fit with the von
Schweidler law plus correction, EG-9) (not shown in Fig.
13), we compute the critical nonergodicity parameter

¢™(q), the critical amplitudeh[(q), and the correction

h{®™(q), shown in Figs. 14 and 15 for, respectively: 1

® andl=2. Although we have seen thiat 1 is rather special,

we have analyzed the corresponding correlators at the lowest
temperature and have included its result. For reference we
also show in Figs. 14 and 15 the static correl&@tq) and

the a-relaxation timery, 4(T) for T=0.477. These quanti-

%(9=0,0)

@™,

02 |

0.0 |
107 107

FIG. 8. Imaginary part ¥(®")%(q,) versusw for the lowest
investigated temperatures (0.47<0.7); (8 gq=6.5 andl=0,
(b) g=0 andl=1, (c) g=0 andl=2.

8(a.t)

Sa(al)
Szg(qyt)

Y04 Suab

q=2.8
[ T=0.477 - — — . L
00} , , , , , 10 10° 107 107 10° 10'
107" 10° 10' 10° 10° 10* 10° th

FIG. 11.S(q,t) versus rescaled time for=2.8,m=0, and(a)
FIG. 9. Time dependence of the collective correlat8f$q,t) I=1, (b) =2 for the seven lowest temperatures. The bold lines
for q=2.8, T=0.477, and =1 (solid liney, | =2 (dashed lines indicate the lowest and highest of these temperatures.
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FIG. 12. Relaxation timesy, 4(T) versusT—T. for m=0 and
g=2.8,1=1 (filled squares q=2.8,1=2 (filled circles; q=7.3,
I=1 (open squargsq=7.3,1=2 (open circles T.=0.475. The

bold lines represent power laws and the thin lines are a guide to the

eye.

ties possess the same characterigtidependence already

found for the corresponding quantities of the TDOF, i.e., for

I=1"=m=m’=0 (cf. Figs. 13 and 14 of KKSjl This
means thati) 7, o andf;™(q) are in phase and(q) and
h{®™(q) are in antiphase witl$'(q) and ii) the correction

h{®™(q) is smallest at thag whereS(q) has its main peak.
This latter fact is well pronounced fod,m)=(1,0) and

(I,m)=(2,0) and less for the others, because there alsq the

dependence of'(q) is less pronounced.

IV. DISCUSSION AND CONCLUSIONS
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FIG. 14. f&™(q) (filled circles, hfy(q) (open diamonds
hiP™(q) (open triangles Sfi(q) (open circley and iy q(T)
(filled squarepversusq for T=0.477;(a) m=0 and(b) m=1.

havior results from a head-tail symmetry that is only slightly

For a system of diatomic and rigid molecules interactingbroken for our molecules. _ o .
via Lennard-Jones potentials we have investigated by means Our main concern has been the investigation of the time-
of a MD simulation the time and temperature dependence ofependent correlatofgollective and self-paytand a test of

a general class af-, (I,m)-, and (’,m’)-dependent correla-
tors. These correlatorslmym/(ﬁ,t) contain the TDOF and
ODOF explicitly.

The static correlators",",(q) in the q frame are not diag-
onal inl andl’. Whereas those with+1' odd are smaller
than S(q)=S3,(q) by about one order of magnitude, this is
not true forS),(q), wherel+1’ is even. This different be-

FIG. 13. S),(q,t) (bold dashed lingsversust for q=2.8 , 6.5,
and 7.3 for the lowest temperature and the critical correléton
solid lineg with A=0.76 and a time scale.=69. The circles indi-
cate the position of the inflection point.

the predictions of mode coupling theofICT). This has
been restricted to the diagonal correlatdrs (). As a by-
product we have found that tleeand (,m) dependence of
the self-correlatorsS{¥™(q,t) approximately factorizes,
which was demonstrated fbr= 1,2 and forg up to 10.6. The
reason for this factorization is based on a faster relaxation of
the ODOF, compared to that of TDOF.

Concerning the MCT predictions, we first studied the ex-
istence of a single transition temperatuiie. For the
(g,1,m)-dependenta-relaxation times 7y, (T) we have
found that they can be fitted with a power lawl10) with
T.=0.475-0.01. Thus from the numerous correlators we
have investigated, one unique temperaflyean be located,
at which the dynamics of TDOF and ODOF crosses over
from an ergodic to a quasinonergodic behavior. This tem-
perature also agrees with that obtained from the translational
diffusion constanD(T). This indicates that the TDOF and
the ODOF are strongly coupled. Values fprand the corre-
sponding exponent parameterare given in Table | for the
translational diffusion constant and a selection of correlators.
From this table we observe thatis approximately constant
(within the statistical errgrwith only two exceptions. The
values for all the correlators with#1 correspond toa
=0.76+=0.03 and are essentially independentjcdind inde-
pendent of whether the collective or self-correlator is consid-
ered. A deviation from this value occurs forf,, the expo-
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. (b) o (sz“qxo.s)+0.5 FIG. 16. Time dependence of various correlatorsTer0.477
) . fcfz shifted by the corresponding nonergodicity paraméfef(q) and
- . . sz'x4o subsequently divided by the critical amplitudid'(q). T=0.477.
1.5 | ‘-1-.'""..“ - s ] Fo(dmaxet) (solid 1ine), F(Qmaxt) (long dashed ling F(Qmin,t)
2 Tra, oM ra000 (short dashed line andC{(t) (dashed-dotted line The bold line
1.0 | St is the critical correlatoG(t) for A=0.76 andt,=69.
”‘°ww.-o
05} "«..“ 1 consistent picture within ideal MCT emerges for gJl,m
ziigmggmﬁe0_2:6;%;;:5;%,‘_ ) with | # 1. The situation is illustrated in Fig. 16 for an expo-
00 SR T g, nent parameter \=0.76. There we plot [S](q,t)
0.0 5.0 10.0 15.0 20.0 25.0

—£5™(q)1/h{(q) versust, which should in the first scaling
regime be equal to the critical correlat@i(t). All the corr-
S ; MR TYE elators shown follow the “universal” time dependence of
‘ . the critical correlatoG(t) for A=0.76. Such a behavior was
also found by Wahnstr and Lewiq 17] for a simple model
for orthoterphenyl. The time range for which the correlators
can be fitted byG(t) depends org, |, and m and varies
between one and a half decader C{(t)=S™(0t)] and
three decadegfor F(qmax,t)zﬁo(qmax,t)]. Although this
time range increases significantly by takihgand the g-

20 | o (8,2¢0.5)+0.5

15 ¢

1.0 |

0.5 1 relaxation time scalé, as free parameters, we believe that
gwg;gﬁjﬁ'&miﬁiﬁi:g:g,gg:g—%{%_gd}_%_:&:gi!ﬁgq the dlfferent time ranges rglate t.o the, K, r_n) dependence of
0.0 L= : - - the size of the asymptotic regime. This has been demon-
00 50 100 150 200 250 strated earlier for the TDOF of supercooled wdte8] and
q for the TDOF for our molecular system in KKS-I. That the

asymptotic regime depends grhas recently been shown by
the analytical calculation of the next order corrections for a
system of hard spheré¢6]. We also find that for the correla-
tors with I=1"=0 (with the exception ofl=1"=1) the
asymptotic regime is largest f(mﬂ])ax the main peak of the
static correlatoS]'(q). This is in variance with the result for

nent for the d|ffl_JS|on constan_t, an(_j even a stronger one fo\5vater[19]. There it has been found that the corrections are
all correlators withl=1. A similar discrepancy betweey,

) . smallest forg= qrspp, Wheregrgppis the position of the first
and the exponent for thie=0 relaxation time has been re- : : .
ported beford16]. sharp diffraction peak and not that of the main peals(@f).

This exceptional role of thel € 1) correlators is also ob- This difference probably relates to the different types of

. ) : glass forming liquids. Water is a network former due to co-
served for the first and second scaling law of ideal MCT. Avalent bonding mechanism, which is absent for our model

_ liquid. The role of this correction to the asymptotic laws is
TABLE I. The y exponent and the correspondlng exponent Pa-also supported by the fact that the,(,m) dependence of the
rameter\ [from .(I-7) and(l-11)] for the translational diffusion con- . itica) nonergodicity parameters, shown in Fig. 15, is only
stantD and various correlators. consistent with that of $™(q) obtained from the molecular
D ©) © o F Fla) F MCT [20] for the present liquid of diatomic molecules, if the
€1 C” Co (Gma)  F(Gmin)  F(Ama) next order correction to the von Schweidler |§ef. Eq. (I-
y 220 166 242 280 256 2.47 257 9)]is taken into account.
N 067 <05 0.73 0.79 0.76 0.74 0.76 The existence of atretchedelaxation onto a more or less
pronounced plateau can be observed for most of the correla-

FIG. 15. f3"(q) (filled circles, hiy(q) (open diamonds
h2™(q) (open triangles Siyq) (open circles and 7pm o(T)
(filled squaresversusq for T=0.477;(a) m=0, (b) m=1, and(c)
m=2.
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tors §'(q,t). It is even more visible for the susceptibilities
(x®")M(q,w) (cf. Fig. 8), since the high frequency wing of

TEST OF MODE COUPLING THEOR.. .. .

i ... 2149

entational dynamicsself par} of the NG, ion was studied
for I=1 andl=2 [26]. In that paper, and also for the col-

the B relaxation, i.e., the part on the right of the minimum, is lective dynamics of dipolar hard sphergs8], it has been
strongly enhanced in comparison to a white noise behaviogoncluded that the different weights of the and micro-
(x®")"(q,0)~w. The existence of such an anomalous Scopic peaks relate to the different numerical values for the

spectrum, which has also been observed in several expe

ments(e.g., Refs[22-25), is one of the important predic-

tions of MCT. A fit of (x®")(q, ) with a critical law®3,
wherea= 0.3 follows from Eq.(I-6) for b=0.55, works, but
again the time span is at most one decade.

§gritical nonergodicity parameters. Fqe=0 is has been ar-
gued thatf(397 ,<f{>9™ (due toq=0, nom dependence
exist9 [26]. Sincef(>9™M(q=0) is thea-relaxation strength
of the corresponding susceptibility ang®")T(q=0) ful-
fills a sum rule(on a logarithmic frequency scaleit be-

The result shown in Fig. 16 also demonstrates the validitcomes obvious that the ratio between therelaxation

of the factorization of thed,I,m) andt dependence of the
various correlators on the time scaletgf. For simple lig-
uids, i.e., forl=m=0, this is a prediction of MCT2,3].

strength and the area under the microscopic peak is larger for
=1 than forl =2. Whether this agreement between the sus-
ceptibilities of glycerol and that for our diatomic molecular

There it has been shown that the vertices of the mode codiquid is merely accidental or not is, however, not obvious.
pling terms are positive for a simple, one-component liquid,One has to keep in mind) that dielectric spectroscopy and
which, however, is not true anymore for molecular liquidslight scattering measures the collective dynamics and not
[8]. Since the factorization theorem only requires that thetheir self-part andii) glycerol has a permanent dipolar mo-

largest eigenvalue of a certain stability mat(bee Ref[3])

ment, in contrast to our diatomic molecules. How far the

is nondegenerate, for which the positivity of the vertices isdipolar interaction would change our MD results is not clear.
sufficient but not necessary, we still believe that this nondetn addition, we believe that the special rolelef1 relates to
generacy is generic and that therefore the factorization thedhe 180° jumps of the moleculgd]. Whether these jumps
rem holds for molecular liquids as well. In the case that aexist for glycerol also and whether they really cause a shift

system exhibits a typB- transition[3], this nondegeneracy
and hence the factorization is guaranteed.

The exceptional behavior for the correlators withl has
also been observed in the susceptibility. Fig. 8. The po-
sition of the minimum betweern and the microscopic peak

of (x®®")(q,w) is approximately the same for=0 andl|
=2, but not forl=1. For the latter it is shifted to higher

frequencies by about one order of magnitude. It is interestin

of the minimum is uncertain.

To summarize, we may say that the results obtained in
Refs.[1] and[4] and in the present paper are consistent with
MCT. There is strong evidence for a single transition tem-
perature, as is predicted from molecular M{3T and for the
validity of the two scaling laws, with the exception of the
correlators withl =1. Regarding the second scaling regime
ave have found that the exponent is essentially independent

that this result resembles the experimental results for som@f the quantity studied, with the exception bf1 and the
glass forming liquids. For instance, it has been stressed biffusion constan®D. It will be a challenge to clarify this

Cumminset al. [21] that light scattering data that may in-
clude contributions from both=0 andl=2 are consistent
with the spectra obtained from neutron scatterindpich is

femaining discrepancy for the values. The critical law,
which is part of the first scaling regime, couid its pure
form not be observed. However, we found strong indirect

only 1=0), but not with those from dielectric measurements.€vidence that such a law is indeed present and is just masked

This is nicely demonstrated for glycerol by Lunkenheimer

et al.[24,25. The situation illustrated in Fig. 2 of Rdi25]

is exactly what we have found in Fig. 8 for our system. The

by the strong interference with the microscopic dynamics.

ACKNOWLEDGMENTS

reader should also note that even the relative weight between

the intensity ofa and microscopic peaks has the same quali-

We thank W. Gtze for many valuable comments on the

tative behavior in both cases, i.e., it is significantly larger formanuscript and the DFG, through SFB 262, for financial

I=1 than forl|=0 andl=2. A similar result has been re-
cently found from a MD simulation of CKN, where the ori-

support. Part of this work was done at the computer facilities
of the Regionales Rechenzentrum Kaiserslautern.

[1] S. Kammerer, W. Kob, and R. Schilling, Phys. Rev. 385,
5450(1997).

[2] W. Gaze and L. Sjgren, Rep. Prog. Phy§5, 241 (1992.

[3] W. Gatze, inLiquids, Freezing and the Glass Transitjozd-
ited by J. P. Hansen, D. Levesque, and J. Zinn-Jutorth-
Holland, Amsterdam, 1991R. Schilling, inDisorder Effects
on Relaxation Processesdited by R. Richert and A. Blumen
(Springer, Berlin, 1994 Transp. Theor. Statistical Phy24
(1995; W. Kob, in Experimental and Theoretical Approaches
to Supercooled Liquids: Advances and Novel Applicatieds
ited by J. Fourkas, D. Kivelson, U. Mohanty, and K. Nelson

(ACS Books, Washington, 1997p. 28.

[4] S. Kammerer, W. Kob, and R. Schilling, preceding paper,
Phys. Rev. 58, 2131(1998.

[5] C. G. Gray and K. E. Gubbingheory of Molecular Liquids
Vol. 1 (Clarendon Press, Oxford, 1984

[6] T. Franosch, M. Fuchs, W. @&®e, M. R. Mayr, and A. P.
Singh, Phys. Rev. 56, 5659(1997).

[7] T. Scheidsteger and R. Schilling, Philos. Mag. 78, 305
(1998.

[8] R. Schiling and T. Scheidsteger, Phys. Rev.56 2932
(1997.



2150 STEFAN KAMMERER, WALTER KOB, AND ROLF SCHILLING PRE 58

[9] Ch. Theis, Diploma thesis, Johannes Gutenberg-Univérsita Rev. E56, 5397(1997.

Mainz (1997). [20] C. Theis and R. Schillingunpublisheg
[10] K. Kawasaki, Physica 243 25 (1997. [21] H. Z. Cummins, G. Li, W. Du, R. Pick, and C. Dreyfus, Phys.
[11] R. Schmitz(unpublisheg Rev. E53, 896(1996.
[12] L. J. Lewis and G. Wahnstm, Phys. Rev. 50, 3865(1994). [22] H. Z. Cummins, G. Li, Y. H. Hwang, G. Q. Shen, W. M. Du,
[13] B. J. Berne and R. PecorBynamic Light ScatteringWiley, J. Hernandez, and N. J. Tao, Z. Phys1@&3, 501 (1997.

New York, 1976. [23] W. Steffen, A. Patkowski, H. Gker, G. Meier, and E. W.

[14] P. Gallo, F. Sciortino, P. Tartaglia, and S.-H. Chen, Phys. Rev. Fischer, Phys. Rev. B9, 2992(1994.
Lett. 76, 2730(1996); F. Sciortino, P. Gallo, P. Tartaglia, and [24] P. Lunkenheimer, A. Pimenow, B. Schiener, R.hBwer, and

S.-H. Chen, Phys. Rev. &4, 6331(1996. A. Loidl, Europhys. Lett33, 611(1996; P. Lunkenheimer, A.
[15] S. Kammerer, Ph.D. thesis, Johannes Gutenberg-Universita Pimenow, M. Dressel, Y. G. Gonchunov, R.'tBoer, and A.
Mainz (1997). Loidl, Phys. Rev. Lett77, 318(1996.
[16] W. Kob and H. C. Andersen, Phys. Rev. L&, 1376(1994); [25] P. Lunkenheimer, A. Pimenow, M. Dressel, B. Gorshunov, U.
Phys. Rev. B51, 4626(1995; ibid. 52, 4134(1995. Schneider, B. Schiener R."Bmer, and A. Loidl, inProceed-
[17] G. Wahnstron and L. J. Lewis, Prog. Theor. Phyk26, 261 ings of the MRS Fall Meeting, Boston, 19%glited by C. A.
(1999. Angell, K. L. Ngai, J. Kieffer, T. Egami, and G. U. Nienhaus
[18] F. Sciortino, P. Gallo, P. Tartaglia, and S. H. Chen, Phys. Rev. (Materials Research Society, Pittsburgh, 1997 47.
E 54, 6331(1996. [26] M. J. Lebon, C. Dreyfus, Y. Guissani, R. M. Pick, and H. Z.

[19] F. Sciortino, L. Fabbian, S. H. Chen, and P. Tartaglia, Phys. Cummins, Z. Phys. B03 433(1997.



