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Test of mode coupling theory for a supercooled liquid of diatomic molecules.
II. q-dependent orientational correlators

Stefan Kämmerer, Walter Kob, and Rolf Schilling
Institut für Physik, Johannes Gutenberg-Universita¨t, Staudinger Weg 7, D-55099 Mainz, Germany

~Received 16 September 1997!

Using molecular-dynamics computer simulations, we study the dynamics of a molecular liquid by means of
a general class of time-dependent correlatorsSll 8

m (q,t), which explicitly involve translational~TDOF! and
orientational degrees of freedom~ODOF!. The system is composed of rigid, linear molecules with Lennard-
Jones interactions. Theq dependence of the static correlatorsSll 8

m (q) strongly depends onl , l 8, andm. The
time-dependent correlators are calculated forl 5 l 8. A test of some of the predictions of mode coupling theory
~MCT! is performed forSll

m(q,t) for l 51,2 and its self-partSll
(s)m(q,t), for l 51, . . . ,6. We find aclear

signature for the existence of a single temperatureTc , at which the nature of the dynamics changes signifi-
cantly. In the first scaling law regime of MCT it is found that the various correlators can be fitted with theb
correlatorG(t), with the exception of those withl 51. Since this is true for the same exponent parameterl as
obtained for the TDOF, we thus find that MCT gives a consistent description of the dynamics of the TDOF as
well as the one of the ODOF, with the exception ofl 51. This different behavior forlÞ1 andl 51 can also
be seen from the corresponding susceptibilities (x9) l l

m(q,v), which exhibit a minimum at about the same
frequencyvmin for all q and all lÞ1, in contrast to (x9)11

m (q,v) for which vmin8 '10vmin . The asymptotic
regime, for which the first scaling law holds, shrinks with increasingl . The second scaling law of MCT
~time-temperature superposition principle! is reasonably fulfilled forlÞ1 but not for l 51. Furthermore, we
show that the q and (l ,m) dependence of the self-part approximately factorizes, i.e.,Sll

(s)m(q,t)
>Cl

(s)(t)Fs(q,t) for all m. @S1063-651X~98!02808-6#

PACS number~s!: 61.43.Fs, 61.20.Ja, 02.70.Ns, 64.70.Pf
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I. INTRODUCTION

In the past few years quite a few papers were publishe
which computer simulations were used to study the time
pendence of thetranslationaldegrees of freedom~TDOF! in
supercooled liquids. On the other hand, theorientationalde-
grees of freedom~ODOF! were so far investigated in muc
less detail since the simulation and data analysis of syst
in which the particles are molecules are quite a bit m
involved than the ones in which the particles have no str
ture. However, since most real materials are of molecu
nature and since experimental methods such as light sca
ing or dielectric measurements probe also the ODOF, i
important to understand how the dynamics of the TDOF a
the ODOF are related to each other. Only by understand
this relationship will it be possible to make a correct inte
pretation of the experimental measurements and to gain
sight into the nature of the glass transition, i.e., the dram
slowing down of the relaxation dynamics of supercooled l
uids upon approaching the glass transition temperature
more thorough discussion of these connections can be fo
e.g., in Ref.@1#, where we also review some of the oth
work in this field.

Very recently we have carried out a molecular-dynam
computer simulation of a simple molecular system in or
to make a detailed comparison between the dynamics of
TDOF and the ODOF@1#. Each molecule in this system i
dumb-bell shaped and consists of two Lennard-Jones
ticles that are separated by a fixed distanced. More details
on the system and the simulation can be found in Ref.@1#. In
that paper we studied the time and temperature depend
PRE 581063-651X/98/58~2!/2141~10!/$15.00
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of the orientational correlation functions

Cl~ t !5
1

N (
n,n8

^Pl„uW n~0!•uW n8~ t !…&, l>1, ~1!

and the self-partCl
(s)(t). Here,uW n(t) is the unit vector point-

ing along the molecular symmetry axis of moleculen and
Pl(x) is thel th Legendre polynomial. The relevance of the
types of correlation functions is given by the fact that th
can be measured in experiments. The main results of
paper were that the temperature dependence of the relax
times ofCl , Cl

(s) and the diffusion constantD were given by
a power law with the same critical temperatureTc but with
critical exponents that depend on the observable. In addit
we showed that the so-called time temperature superpos
principle works well forCl

(s) , if l .2. Thus we concluded
that many of the predictions of mode coupling theory~MCT!
@2,3# hold for these correlation functions, although certa
discrepancies are present.

In the preceding paper, subsequently called KKS-I,
have investigated the time and temperature dependenc
the translational degrees of freedom by studying quantiti
such as the van Hove correlation functionGs(r ,t) and the
intermediate scattering functionF(q,t) @4#. The main con-
clusion of that paper was that MCT is able to give also
good description for the time and temperature dependenc
these correlation functions.

As we will demonstrate below, the intermediate scatter
function F(q,t) and the orientational correlation function
Cl(t) are just a special case of a more general type of c
relation function, which involves the translational as well
2141 © 1998 The American Physical Society
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2142 PRE 58STEFAN KÄMMERER, WALTER KOB, AND ROLF SCHILLING
the orientational degrees of freedom at finite wave vectoqW ,
i.e., uqW u.0. The goal of thepresentpaper is therefore to
investigate the time and temperature dependence of t
more general correlation functions, since it is these corr
tors that are needed for a more detailed description of
dynamics of a molecular system. In addition, these corr
tion functions can also be calculated directly within t
framework of MCT ~although such a calculation might i
practice be quite involved! thus allowing to perform a more
stringent test of whether MCT is able to give a correct d
scription of the dynamics of the system investigated.

Our paper is organized as follows: In the next section
will introduce the mentioned generalized correlation fun
tions and will discuss some of their properties. Section
presents the results and the MCT analysis and the final
tion contains a summary and our main conclusions.

II. CORRELATION FUNCTIONS

We introduce a set of correlators that involves the o
particle density and the angular dependence for a molec
liquid of rigid, axially symmetric molecules:

r~xW ,V,t !5 (
n51

N

d„xW2xWn~ t !…d„V,Vn~ t !…, ~2!

wherexWn(t) andVn(t)[„un(t),fn(t)… denote the center o
mass position and the orientation of thenth molecule at time
t, respectively. Due to the non-Euclidean metric for t
anglesu and f, one must use the invariant delta functio
d(V,V8). For this and other details of the theoretical d
scription of molecular liquids, the reader is referred to t
textbook by Gray and Gubbins@5#. Expansion ofr(xW ,V,t)
with respect to a product of plane waves and spherical
monicsYlm(V) leads to the tensorial density modes

r lm~qW ,t !5 i lA4p (
n51

N

eiqW •xWn~ t !Ylm„Vn~ t !…, ~3!

wherel 50,1,2, . . . and2 l<m< l . The factorA4p is used
so thatr00(qW ,t) equals the definition ofr(qW ,t) for simple
liquids andi l is introduced for convenience~see below!. The
corresponding correlators

Slm,l 8m8~qW ,t !5
1

N
^dr lm* ~qW ,t !dr l 8m8~qW ,0!& ~4!

of the fluctuationdr lm(qW ,t)5r lm(qW ,t)2^r lm(qW ,t)& vanish
for (q,l ,m)5(0,0,0), and are otherwise given by

Slm,l 8m8~qW ,t !5
4p

N
i l 82 l (

n,n8
^exp$2 iqW •@xWn~ t !2xWn8~0!#%

3Ylm* „Vn~ t !…Yl 8m8„Vn8~0!…&, ~5!

which shows the explicit dependence on both the TDOF
the ODOF. Its corresponding self-partSlm,l 8m8

(s) (qW ,t) is obvi-
ous.

Taking into account thatY0051/A4p, one obtains from
Eq. ~5!
se
a-
e
-

-

e
-
I
c-

-
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-
e
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d

S00,00~qW ,t !

S00,00~qW !
5F~q,t !, ~6!

i.e., the normalized density correlator for the center of m
positions, which was studied in KKS-I. On the other han
we find from Eq.~5! for qW 50,

Slm,l 8m8~0,t !5Cl~ t !dmm8d l l 8. ~7!

Here the addition theorem for the spherical harmonics@5#
and the isotropy have been used. As already mentioned in
Introduction, this special case was investigated in Ref.@1#.
Equations~6! and~7! hold for the corresponding self-part a
well.

Although it is not obvious how these correlators forl ,l 8
Þ0 can be measured in real experiments forqW Þ0, they are
the basic quantities that enter the MCT for a molecule in
simple liquid @6# and for molecular liquids@7–11#. To our
knowledge, there exists only one computer simulation t
considersq-dependent orientational correlators@12#. But the
experimental relevance of the correlators considered in R
@12# is unclear. The correlators given in Eq.~5! simplify a
bit, if one uses theq frame @5#, i.e., qW 5qW 0[(0,0,q). In that
case one obtains@8#

Slm,l 8m8~qW 0 ,t ![Sll 8
m

~q,t !dmm8, ~8!

which differ from zero only for 0<umu<min(l ,l 8). Since
Sll 8

m (q,t)5Sll 8
2m(q,t), one can restrict oneself tom>0. The

introduction ofi l in Eq. ~3! makesSll 8
m (q,t) a real quantity.

The same properties hold for the self-part as well. In
following we will present all results in theq frame.

Some of the equations that we will subsequently make
of have been given in KKS-I and are not reproduced he
We will refer to Eq. (n) of that paper by (I-n).

III. RESULTS

This section is subdivided into two parts. The first pa
contains the results for the static correlatorsSll 8

m (q), and the
second one presents the dynamical correlatorsSll 8

m (q,t) and

Sll 8
(s)m(q,t). In the following we restrict the values ofl andl 8

to 0, 1, and 2.

A. Static properties

The static correlators are shown in Figs. 1–3 forT
50.477, the lowest investigated temperature. First of all
becomes obvious from these figures thatSll 8

m (q50) is
m-independent and diagonal inl and l 8, as it should be due
to isotropy. A comparison of the various diagonal correlat
in Figs. 1 and 2 with each other shows that the correlat
Sll

0 (q) for l 51 and 2 possess a significantq dependence
similar to that ofS(q)[F(q,0), in contrast to those form
Þ0. The same behavior was found for a system of dipo
hard spheres@8#, although for that system the most prom
nent peak occurs forSll

1 (q) at q50. In contrast toS(q) and
S11

0 (q), the correlatorS22
0 (q) has a rather broad maximum a

q50 with a height that is comparable to that atqmax8 '7.3,
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the location of the main peak inS22
0 (q). In Fig. 3 we present

the nondiagonal correlatorsSll 8
m (q) with lÞ l 8. First of all

one recognizes thatS02
0 (q) is much larger thanS01

0 (q) and
S12

m (q). This can easily be understood. If the molecules h
‘‘head-tail’’ symmetry, then it can be shown thatSll 8

m (q)
[0, for l ,l 8 such thatl 1 l 8 is odd. Since for our molecule
this symmetry is only slightly broken, we expectSll 8

m (q) to
be much smaller forl 1 l 8 odd than forl 1 l 8 even.

The second point one recognizes from this figure is t
the nondiagonal correlatorsSll 8

m (q) can have the same mag
nitude as the diagonal ones. Hence, there is no reason
the former should be neglected in analytical calculations.
example, since the solutions of the MCT equations for
time-dependent correlatorsSll 8

m (q,t) are determined by the
static correlatorsSll 8

m (q) @8#, it might not be a good approxi
mation to considerl 5 l 8, only.

B. Dynamical properties

We have investigated both the self-correlators forl 5 l 8
50,1, . . . ,6 and thecollective correlators forl 5 l 850, 1,
and 2. Let us start with the self-partSll

(s)m(q,t). Often it is
assumed~see, e.g., Ref.@13#! that theq and (l ,m) depen-
dence~wherel 5 l 8) factorizes, i.e.,

Sll
~s!m~q,t !>Cl

~s!~ t !Fs~q,t ! ~9!

FIG. 2. S22
m (q) versusq for T50.477 andm50 ~solid line!,

m51 ~dashed line!, andm52 ~dotted line!.

FIG. 1. Wave-vector dependence of static correlation functi
for T50.477.S(q)[S00

0 (q) ~solid line!, S11
m (q) for m50 ~dotted

line!, andm51 ~dashed line!.
d

t

hy
r

e

with Cl
(s)(t) the self-part of Eq.~1! andFs(q,t)[S00

(s)0(q,t)
the self-part of Eq.~6!. The reader should note that Eq.~9! is
assumed to hold for allm, and that the factorization is trivia
for q50. To check the validity of Eq.~9! for q.0, we show
Sll

(s)m(q,t) and Cl
(s)(t)Fs(q,t) in Fig. 4 (l 51) and Fig. 5

( l 52) for three differentq values andT50.477. Although
the factorization becomes worse with increasingq, it is still a
reasonable approximation, even forq510.6. Furthermore,
the quality of the factorization is better in theb-relaxation
than in thea-relaxation regime~at least forl 52), and it also
becomes better with increasing temperature.

This approximate factorization does not necessarily m
that the coupling between the TDOF and ODOF is ve
weak. The comparison ofCl

(s)(t) with Fs(q,t) in Fig. 4 and
Fig. 5 reveals the reason whySll

(s)m(q,t) can be approxi-
mately factorized. For instance,C1

(s)(t) has decayed to 0.1
for t>23104, whereas at this time the value ofFs(q
52.8,t) is still around 0.85, i.e., the ODOF relax much fast
than the TDOF. This is consistent with our observation t
in the time span of the orientational correlation time, as
duced fromC1

(s)(t) at the lowest temperature, the avera
center of mass positions change only a fraction~about 30%!
of the mean distance between the molecular centers.
stress that this is different from the MD simulation of supe
cooled water. There,Fs(q,t) and Cl(t) relax on approxi-
mately the same time scale@14#.

We now turn to the test of the various MCT predictio
~see KKS-I!. We find @15# that S11

(s)m(q,t) do not obey the
second scaling law, i.e., the time-temperature superpos
principle. This observation has already been made for
caseq50 @1#, which shows that this type of correlation func
tion does not follow the predictions of MCT. This situation
different for the correlation functionSll

(s)m(q,t) with l>2, for
which the second scaling law holds reasonably well. T
critical exponents~which are practically independent ofq)
for the divergence of the relaxation time,g1

(s) andg2
(s) , are

1.8 and 2.45, respectively, where the latter value is fa
close to the one found for the TDOF,Fs(q,t), which was
2.56@4#. The exceptional role for the correlators withl 51 is
due to the existence of 180° jumps of the molecular axis@1#,
since the Legendre polynomialP1(cosu) is sensitive on re-
orientations by 180°. The same is true for allPl(cosu) with l
odd. But the weight ofPl(cosu) for u'0° and u'180°

FIG. 3. 0.5S02
0 (q) ~solid line!, S01

0 (q) ~dashed line!, S12
0 (q)

~dashed dotted line!, and S12
1 (q) ~dotted line! versus q for T

50.477.
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decreases with increasingl . Since the second scaling la
holds for lÞ1, we can restrict ourselves in the following
the analysis of the correlation functions at thelowest tem-
perature.

In Fig. 6 we investigate the validity of the first scaling la
@Eq. ~I-4!#. This is done forq50 by fitting Cl

(s)(t) with the
critical correlatorG(t). We remind the reader that this fit i
performed forfixed valuesl50.76 andts569 as obtained
from the similar fit ofF(qmax,t). More details on this analy
sis can be found in Sec. IV C of the preceding paper@4#. For
l>2 ~Fig. 6! the critical correlator fits the data very we
over about two decades in time. This range, however,
comes smaller with increasingl , which may indicate that
corrections to the asymptotic law become more important
large l . If one usesl andts @cf. ~I-4!# as free fit parameters
the resulting fits follow the data longer by an additional o
to two orders of magnitude in time.@We note that even

FIG. 4. S11
(s)m(q,t) for m50,1 ~dotted lines!, C1

(s)(t) andFs(q,t)
~dashed lines!, and C1

(s)(t)Fs(q,t) ~solid line! versus t for T
50.477 and~a! q52.8, ~b! q56.5, ~c! q510.6.
e-

r

e

C1
(s)(t) can be fitted reasonably well withG(t). Since we

have shown in Ref.@1# that for this correlation function the
first scaling law does not hold, one might argue that it do
not make sense to analyzeC1

(s) in the way proposed by MCT
However, we find that the violation of the second scaling l
is only weak and therefore it is not unreasonable to m
such an analysis.# The so-obtained values forl increase to-
wards unity with increasingl and reach, e.g., 0.97 forl 56.
We also mention that we do not observe a critical law, E
~I-6!, in its pure form, the reason for which is likely the
strong influence of the microscopic dynamics on the ea
b-relaxation regime. However, the gentle approach of
curves to their inflection points~see Fig. 6! is a clear indica-
tion that a contribution of this form is important.

We have found that these results do not change sig
cantly for Sll

(s)m(q,t) if q.0. From the fit with the von
Schweidler law plus corrections, Eq.~I-9! ~not shown in Fig.

FIG. 5. S22
(s)m(q,t) for m50,1,2 ~dotted lines!, C2

(s)(t) and
Fs(q,t) ~dashed lines!, andC2

(s)(t)Fs(q,t) ~solid line! versust for
T50.477 and~a! q52.8, ~b! q56.5, ~c! q510.6.
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PRE 58 2145TEST OF MODE COUPLING THEORY . . . . II. . . .
6!, one can deduce the critical nonergodicity parame

f l l
(s,c)m(q), the critical amplitudeh̃l l

(s)m(q), and the correction

h̃l l
(s,2)m(q), which are shown in Fig. 7 forl 51, 2, and 6, for

the casem50 @see KKS-I for the difference between„h(q),

h(2)(q)… and „h̃(q),h̃(2)(q)…#. We note that the result forl
51 was obtained forl50.76 and a shift of the time scale t
ts8510. Due to the approximate factorization property, theq
dependence off l l

(s,c)m(q) is given by that of f (s,c)(q)
[ f 00

(s,c)0(q). The functionsf l l
(s,c)m(q) decrease with increas

ing l , as expected from Fig. 6. The variation of the critic

amplitude h̃l l
(s)m(q) and the correctionh̃l l

(s,2)m(q) with q is
similar to that forl 5 l 850 ~cf. Fig. 13 of KKS-I! with the
exception that these quantities do not vanish forq→0.

The a, b, and the microscopic time scale can be bet

visualized from the imaginary part (x (s)9) l l
m(q,v) of the dy-

namical susceptibility as a function ofv, which is shown for
m50 in Fig. 8 for q5qmax, l 50 and q50, l 51,2. The
microscopic peak is at aboutv51 for all these values ofl .
Whereas the position of thea peak and the location of th
minimum ~for low temperatures! are approximately the sam
for l 50 and l 52, these positions are shifted to higher fr
quencies by about one decade forl 51. We believe that this
shift relates to the 180° jumps of the molecules~see Ref.
@1#!, because these jumps do not affect the correlators w
evenl , but those with odd value ofl , and particularly those
with l 51.

The rest of this section is devoted to the discussion of
collective correlatorsSll

m(q,t), which are presented in Fig.
for q52.8 @the position of the main peak ofS11

0 (q) ~cf. Fig.
1!# and in Fig. 10 forq56.5 @the location of the main pea
of S(q)5S00

0 (q) ~cf. Fig. 1!#. Note, that, due to symmetr
~cf. Sec. II!, there are only two and three independent co
elators forl 51 andl 52, respectively. These correlators e
hibit a strongm dependence, in contrast toSll

(s)m(q,t). The
reader should also note thatS11

1 (q,t),S11
0 (q,t) for q52.8,

whereasS11
1 (q,t).S11

0 (q,t) for q56.5. These inequalities
are related to the fact thatS11

0 (q) has its main peak atq
>2.8, whereS11

1 (q) does not have a maximum, where
S11

1 (q) has its main peak atq>6.5, whereS11
0 (q) is close to

a minimum. Similar considerations hold for them and q

FIG. 6. Time dependence ofCl
(s)(t) for l 52,3, . . . ,6 ~bold

dashed lines!. Thin lines: b correlator withl50.76. The circles
indicate the position of the inflection point.
r

l

r

th

e

-

dependence ofS22
m (q,t). These observations make it obviou

that a factorization@cf. Eq. ~9!# does not work for the collec-
tive correlators.

The test of the second scaling law is shown in Fig. 11
q52.8, m50, andl 51,2. As already found forCl

(s)(t) and
Cl(t), i.e., the correlation functions forq50, this scaling
law holds for l 52 but not for l 51. We define the
a-relaxation timet lm,q(T) as the time it takesSll

m(q,t lm,q) to
decay to the value of 1/e. The temperature dependence
t lm,q(T) is shown in Fig. 12. Fixing Tc50.475, the
a-relaxation times obey a power law~I-10! over about two
to three decades in time. For the corresponding exponeg
one obtains approximately 1.9 forl 51 and 2.5 forl 52 with
no significantq dependence. Again theg values for l 52
~and the same remains true forl 53, . . . ,6) fit with that for
l 50, which was around 2.55~see KKS-I!, whereas the value
of g for l 51 is quite different.

FIG. 7. Wave-vector dependence off l l
(s,c)0 ~a!, h̃ll

(s)0 ~b!, and

h̃ll
(s,2)0 ~c! for l 52 andl 56.
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FIG. 8. Imaginary part (x (s)9) l l
0 (q,v) versusv for the lowest

investigated temperatures (0.477<T<0.7); ~a! q56.5 and l 50,
~b! q50 andl 51, ~c! q50 andl 52.

FIG. 9. Time dependence of the collective correlatorsSll
m(q,t)

for q52.8, T50.477, andl 51 ~solid lines!, l 52 ~dashed lines!.
The test of the first scaling law by fitting the time depe
dence ofSll

m(q,t) with theb correlator is done in Fig. 13 for
l 52, m50. This fit ~again withl50.76 andts569) works
well for different values ofq. From the fit with the von
Schweidler law plus correction, Eq.~I-9! ~not shown in Fig.
13!, we compute the critical nonergodicity paramet
f l l

c,m(q), the critical amplitudeh̃l l
m(q), and the correction

h̃l l
(2)m(q), shown in Figs. 14 and 15 for, respectively,l 51

and l 52. Although we have seen thatl 51 is rather special,
we have analyzed the corresponding correlators at the low
temperature and have included its result. For reference
also show in Figs. 14 and 15 the static correlatorSll

m(q) and
the a-relaxation timet lm,q(T) for T50.477. These quanti

FIG. 10. Time dependence of the collective correlatorsSll
m(q,t)

for q56.5, T50.477, andl 51 ~solid lines!, l 52 ~dashed lines!.

FIG. 11. Sll
m(q,t) versus rescaled time forq52.8,m50, and~a!

l 51, ~b! l 52 for the seven lowest temperatures. The bold lin
indicate the lowest and highest of these temperatures.
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ties possess the same characteristicq dependence alread
found for the corresponding quantities of the TDOF, i.e.,
l 5 l 85m5m850 ~cf. Figs. 13 and 14 of KKS-I!. This
means that~i! t lm,q and f l l

c,m(q) are in phase andh̃l l
m(q) and

h̃l l
(2)m(q) are in antiphase withSll

m(q) and ~ii ! the correction

h̃l l
(2)m(q) is smallest at thatq whereSll

m(q) has its main peak
This latter fact is well pronounced for (l ,m)5(1,0) and
( l ,m)5(2,0) and less for the others, because there also tq
dependence ofSll

m(q) is less pronounced.

IV. DISCUSSION AND CONCLUSIONS

For a system of diatomic and rigid molecules interact
via Lennard-Jones potentials we have investigated by me
of a MD simulation the time and temperature dependenc
a general class ofqW -, (l ,m)-, and (l 8,m8)-dependent correla
tors. These correlatorsSlm,l 8m8(q

W ,t) contain the TDOF and
ODOF explicitly.

The static correlatorsSll 8
m (q) in the q frame are not diag-

onal in l and l 8. Whereas those withl 1 l 8 odd are smaller
thanS(q)[S00

0 (q) by about one order of magnitude, this
not true forS02

0 (q), where l 1 l 8 is even. This different be-

FIG. 12. Relaxation timest lm,q(T) versusT2Tc for m50 and
q52.8, l 51 ~filled squares!; q52.8, l 52 ~filled circles!; q57.3,
l 51 ~open squares!; q57.3, l 52 ~open circles!. Tc50.475. The
bold lines represent power laws and the thin lines are a guide to
eye.

FIG. 13. S22
0 (q,t) ~bold dashed lines! versust for q52.8 , 6.5,

and 7.3 for the lowest temperature and the critical correlator~thin
solid lines! with l50.76 and a time scalets569. The circles indi-
cate the position of the inflection point.
r

ns
of

havior results from a head-tail symmetry that is only sligh
broken for our molecules.

Our main concern has been the investigation of the tim
dependent correlators~collective and self-part! and a test of
the predictions of mode coupling theory~MCT!. This has
been restricted to the diagonal correlators (l 5 l 8). As a by-
product we have found that theq and (l ,m) dependence of
the self-correlatorsSll

(s)m(q,t) approximately factorizes
which was demonstrated forl 51,2 and forq up to 10.6. The
reason for this factorization is based on a faster relaxatio
the ODOF, compared to that of TDOF.

Concerning the MCT predictions, we first studied the e
istence of a single transition temperatureTc . For the
(q,l ,m)-dependenta-relaxation timest lm,q(T) we have
found that they can be fitted with a power law~I-10! with
Tc50.47560.01. Thus from the numerous correlators w
have investigated, one unique temperatureTc can be located,
at which the dynamics of TDOF and ODOF crosses o
from an ergodic to a quasinonergodic behavior. This te
perature also agrees with that obtained from the translatio
diffusion constantD(T). This indicates that the TDOF an
the ODOF are strongly coupled. Values forg and the corre-
sponding exponent parameterl are given in Table I for the
translational diffusion constant and a selection of correlato
From this table we observe thatg is approximately constan
~within the statistical error! with only two exceptions. Theg
values for all the correlators withlÞ1 correspond tol
50.7660.03 and are essentially independent ofq and inde-
pendent of whether the collective or self-correlator is cons
ered. A deviation from this value occurs forgD , the expo-

he

FIG. 14. f 11
c,m(q) ~filled circles!, h̃11

m (q) ~open diamonds!,

h̃11
(2)m(q) ~open triangles!, S11

m (q) ~open circles!, and t1m,q(T)
~filled squares! versusq for T50.477;~a! m50 and~b! m51.
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nent for the diffusion constant, and even a stronger one
all correlators withl 51. A similar discrepancy betweengD
and the exponent for thel 50 relaxation time has been re
ported before@16#.

This exceptional role of the (l 51) correlators is also ob
served for the first and second scaling law of ideal MCT.

FIG. 15. f 22
c,m(q) ~filled circles!, h̃22

m (q) ~open diamonds!,

h̃22
(2)m(q) ~open triangles!, S22

m (q) ~open circles!, and t2m,q(T)
~filled squares! versusq for T50.477;~a! m50, ~b! m51, and~c!
m52.

TABLE I. The g exponent and the corresponding exponent
rameterl @from ~I-7! and~I-11!# for the translational diffusion con
stantD and various correlators.

D C1
(s) C2

(s) C6
(s) Fs(qmax) F(qmin) F(qmax)

g 2.20 1.66 2.42 2.80 2.56 2.47 2.57
l 0.67 ,0.5 0.73 0.79 0.76 0.74 0.76
or

consistent picture within ideal MCT emerges for allq,l ,m
with lÞ1. The situation is illustrated in Fig. 16 for an exp
nent parameter l50.76. There we plot @Sll

m(q,t)

2 f l l
c,m(q)#/h̃l l

m(q) versust, which should in the first scaling
regime be equal to the critical correlatorG(t). All the corr-
elators shown follow the ‘‘universal’’ time dependence
the critical correlatorG(t) for l50.76. Such a behavior wa
also found by Wahnstro¨m and Lewis@17# for a simple model
for orthoterphenyl. The time range for which the correlato
can be fitted byG(t) depends onq, l , and m and varies
between one and a half decade@for C2

(s)(t)[S22
(s)m(0,t)] and

three decades@for F(qmax,t)[S00
0 (qmax,t)]. Although this

time range increases significantly by takingl and theb-
relaxation time scalets as free parameters, we believe th
the different time ranges relate to the (q,l ,m) dependence of
the size of the asymptotic regime. This has been dem
strated earlier for the TDOF of supercooled water@18# and
for the TDOF for our molecular system in KKS-I. That th
asymptotic regime depends onq has recently been shown b
the analytical calculation of the next order corrections fo
system of hard spheres@6#. We also find that for the correla
tors with l 5 l 8>0 ~with the exception ofl 5 l 851) the
asymptotic regime is largest forqmax

(l) , the main peak of the
static correlatorSll

m(q). This is in variance with the result fo
water @19#. There it has been found that the corrections
smallest forq5qFSDP, whereqFSDPis the position of the first
sharp diffraction peak and not that of the main peak ofS(q).
This difference probably relates to the different types
glass forming liquids. Water is a network former due to c
valent bonding mechanism, which is absent for our mo
liquid. The role of this correction to the asymptotic laws
also supported by the fact that the (q,l ,m) dependence of the
critical nonergodicity parameters, shown in Fig. 15, is on
consistent with that off l l

c,m(q) obtained from the molecula
MCT @20# for the present liquid of diatomic molecules, if th
next order correction to the von Schweidler law@cf. Eq. ~I-
9!# is taken into account.

The existence of astretchedrelaxation onto a more or les
pronounced plateau can be observed for most of the corr

-

FIG. 16. Time dependence of various correlators forT50.477
shifted by the corresponding nonergodicity parameterf l l

c,m(q) and

subsequently divided by the critical amplitudeh̃ll
m(q). T50.477.

Fs(qmax,t) ~solid line!, F(qmax,t) ~long dashed line!, F(qmin ,t)
~short dashed line!, andC2

(s)(t) ~dashed-dotted line!. The bold line
is the critical correlatorG(t) for l50.76 andts569.
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tors Sll
m(q,t). It is even more visible for the susceptibilitie

(x (s)9) l l
m(q,v) ~cf. Fig. 8!, since the high frequency wing o

theb relaxation, i.e., the part on the right of the minimum,
strongly enhanced in comparison to a white noise beha
(x (s)9) l l

m(q,v);v. The existence of such an anomalo
spectrum, which has also been observed in several ex
ments~e.g., Refs.@22–25#!, is one of the important predic
tions of MCT. A fit of (x (s)9) l l

m(q,v) with a critical lawv0.3,
wherea50.3 follows from Eq.~I-6! for b50.55, works, but
again the time span is at most one decade.

The result shown in Fig. 16 also demonstrates the valid
of the factorization of the (q,l ,m) and t dependence of the
various correlators on the time scale ofts . For simple liq-
uids, i.e., for l 5m50, this is a prediction of MCT@2,3#.
There it has been shown that the vertices of the mode c
pling terms are positive for a simple, one-component liqu
which, however, is not true anymore for molecular liqui
@8#. Since the factorization theorem only requires that
largest eigenvalue of a certain stability matrix~see Ref.@3#!
is nondegenerate, for which the positivity of the vertices
sufficient but not necessary, we still believe that this non
generacy is generic and that therefore the factorization th
rem holds for molecular liquids as well. In the case tha
system exhibits a type-B transition @3#, this nondegeneracy
and hence the factorization is guaranteed.

The exceptional behavior for the correlators withl 51 has
also been observed in the susceptibility~cf. Fig. 8!. The po-
sition of the minimum betweena and the microscopic pea
of (x (s)9) l l

m(q,v) is approximately the same forl 50 and l
52, but not for l 51. For the latter it is shifted to highe
frequencies by about one order of magnitude. It is interes
that this result resembles the experimental results for s
glass forming liquids. For instance, it has been stressed
Cumminset al. @21# that light scattering data that may in
clude contributions from bothl 50 and l 52 are consisten
with the spectra obtained from neutron scattering~which is
only l 50), but not with those from dielectric measuremen
This is nicely demonstrated for glycerol by Lunkenheim
et al. @24,25#. The situation illustrated in Fig. 2 of Ref.@25#
is exactly what we have found in Fig. 8 for our system. T
reader should also note that even the relative weight betw
the intensity ofa and microscopic peaks has the same qu
tative behavior in both cases, i.e., it is significantly larger
l 51 than for l 50 and l 52. A similar result has been re
cently found from a MD simulation of CKN, where the or
s

on
or

ri-

y

u-
,

e

s
-
o-
a

g
e

by

.
r

en
i-
r

entational dynamics~self part! of the NO3
2 ion was studied

for l 51 and l 52 @26#. In that paper, and also for the co
lective dynamics of dipolar hard spheres@7,8#, it has been
concluded that the different weights of thea and micro-
scopic peaks relate to the different numerical values for
critical nonergodicity parameters. Forq50 is has been ar-
gued thatf l 11,l 11

(s,c)m , f l l
(s,c)m ~due toq50, no m dependence

exists! @26#. Sincef l l
(s,c)m(q50) is thea-relaxation strength

of the corresponding susceptibility and (x (s)9) l l
m(q50) ful-

fills a sum rule~on a logarithmic frequency scale!, it be-
comes obvious that the ratio between thea-relaxation
strength and the area under the microscopic peak is large
l 51 than forl 52. Whether this agreement between the s
ceptibilities of glycerol and that for our diatomic molecul
liquid is merely accidental or not is, however, not obviou
One has to keep in mind~i! that dielectric spectroscopy an
light scattering measures the collective dynamics and
their self-part and~ii ! glycerol has a permanent dipolar mo
ment, in contrast to our diatomic molecules. How far t
dipolar interaction would change our MD results is not cle
In addition, we believe that the special role ofl 51 relates to
the 180° jumps of the molecules@1#. Whether these jumps
exist for glycerol also and whether they really cause a s
of the minimum is uncertain.

To summarize, we may say that the results obtained
Refs.@1# and@4# and in the present paper are consistent w
MCT. There is strong evidence for a single transition te
perature, as is predicted from molecular MCT@8# and for the
validity of the two scaling laws, with the exception of th
correlators withl 51. Regarding the second scaling regim
we have found that theg exponent is essentially independe
of the quantity studied, with the exception ofl 51 and the
diffusion constantD. It will be a challenge to clarify this
remaining discrepancy for theg values. The critical law,
which is part of the first scaling regime, couldin its pure
form not be observed. However, we found strong indire
evidence that such a law is indeed present and is just ma
by the strong interference with the microscopic dynamics
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